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Abstract. Current rates of climate and atmospheric change are likely higher than during the last millions of years. Even higher

rates of change are projected in CMIP5 climate model ensemble runs for some RCP scenarios. Mismatches between the speed

of ecological processes such as physiological adaptation, demographic shifts or migration, and the speed of changes in en-

vironmental conditions imply lags between the transient vegetation state and the vegetation state expected under prevailing

environmental conditions. Here, we used a dynamic vegetation model, the aDGVM, to study lags between transient and com-5

mitted vegetation in Africa under changing atmospheric CO2 mixing ratio. We hypothesized that lag size increases with more

rapidly changing CO2 mixing ratio as opposed to slower changes in CO2, and that disturbance by fire further increases these

lags. Our model results confirm these hypotheses, revealing lags between vegetation state and environmental conditions and

enhanced lags in fire-driven systems. Biome states, carbon stored in vegetation and tree cover in Africa are most sensitive to

changes in the CO2 mixing ratio under recent and near-future levels, between approximately 300 and 500 ppm. These results10

have important implications for vegetation modellers as well as for management and policy making. Lag effects implicate

that vegetation will undergo substantial changes in distribution patterns, structure and carbon sequestration even if emissions

of fossils fuels and other greenhouse gasses are reduced and the climate system stabilizes. We conclude that modelers need

to account for lags in models and data used for model testing and that policy makers need to consider lagged responses and

committed changes in the biosphere when developing adaptation and mitigation strategies.15

1 Introduction

Climate and the composition of the atmosphere have been subject to substantial changes during Earth history (Beerling and

Royer, 2011). For instance, paleo-records indicate that the expansion of forest vegetation during the Devonian dramatically

reduced the atmospheric CO2 mixing ratio (Le Hir et al., 2011) and Milankovitch cycles cause periodic changes in the climate20

system and the atmosphere on millennial time scales (Milankovic, 1941; Hays et al., 1976). In addition to natural variability,
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anthropogenic emissions of CO2 and other green house gasses have contributed to global warming during the last decades. The

5th assessment report of the Intergovernmental Panel of Climate Change (IPCC) indicates further changes of the climate system

in the future (IPCC, 2013, 2014a, b). Since the pre-industrial era, CO2 increased from approximately 280 ppm to a current

value of approximately 400 ppm, and the most pessimistic IPCC RCP 8.5 climate change scenario projects CO2 increases to25

approximately 950 ppm by 2100. Proxy data suggest that such CO2 levels have not occurred since the Eocene/early Oligocene,

more than 30 Myr ago (Beerling and Royer, 2011). Current carbon emission rates are unprecedented and higher than during

the Paleocene-Eocene Thermal Maximum (PETM), a period with high carbon emissions some 56 million years ago (Zeebe

et al., 2016).

The CO2 increase projected in the IPCC RCP 8.5 scenario corresponds to an average increase of more than 6 ppm per year30

until the end of the century. In comparison, an increase from approximately 190 ppm during the last glacial maximum to a

pre-industrial value of 280 ppm during 26,000 years corresponds to an average rate of 3.5×10−3 ppm per year (Barnola et al.,

1987). Within this period, Monnin et al. (2001) report peak rates of 2.7×10−2 ppm per year in a 300 year period at 13.8ky B.P.

A decrease from approximately 900 ppm to 300 ppm during the Oligocene took approximately 10 million years (Beerling and

Royer, 2011), which translates into an average rate of −6× 10−5 ppm per year. As the current rates of CO2 change are likely35

unprecedented, no proxy analogues exist to deduce vegetation responses to the ongoing atmospheric and climatic changes

(Prentice et al., 1993; Foster et al., 2017). Due to the coarse temporal resolution of many paleo-records, it is, however, still

challenging to calculate rates at decadal or even finer temporal resolution for a direct comparisons of past, present and future

rates of change (but see Zeebe et al., 2016).

Environmental conditions such as CO2, precipitation, temperature or soil properties influence plant ecophysiological pro-40

cesses that ultimately drive plant growth, demographic rates, competitive hierarchies, community assembly and biogeographic

patterns across the Earth’s land surface. These processes are sensitive to both the actual values and to variation of environmental

drivers. Different ecological processes operate at various temporal and spatial scales (Penuelas et al., 2013) and determine how

ecosystems respond to environmental change. On short time scales (days to months), plasticity allows photosynthesis (Gun-

derson et al., 2010), carbon allocation and other processes to adapt to changes in environmental conditions (Penuelas et al.,45

2013). At intermediate time scales (years to decades), vegetation is influenced by demographic rates, succession, dispersal,

migration and community assembly (Penuelas et al., 2013). At long time scales (centuries and longer), evolutionary processes

allow plants to adapt to changing environments and speciation and extinction modify the species pool.

A mismatch between rates of change in the environmental forcing and ecological responses of vegetation implies that veg-

etation is not in an equilibrium state with the environment, that is a state where averages of key ecosystem functions such as50

carbon and water fluxes or vegetation structure remain in constant if averages of environmental drivers remain in constant.

Rather, forcing lags emerge where the transient vegetation state lags behind rates of change of environmental drivers (Bertrand

et al., 2016). Quantifying these lags is crucial for our understanding of ecosystem dynamics because they imply that the ob-

served vegetation state does not fully reflect prevailing environmental conditions and that ecosystems are committed to further

changes even if environmental conditions stabilize (Jones et al., 2009; Port et al., 2012). We expect that the size of the forcing55

lag between equilibrium and transient vegetation states will be influenced by actual values of environmental conditions, the
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rate at which they change, and by the plant community composition and community-specific ecological processes. Vegetation

might have been closer to equilibrium with the environment, with smaller lags, in the past when rates of environmental changes

were low, while it is committed to large changes under current and future, rapidly changing climate.

Disturbances such as fire, drought, heat waves or herbivory rapidly modify vegetation states and thereby create disturbance60

lags, i.e., deviations from the committed vegetation state purely defined by environmental conditions in the absence of distur-

bance. Lag size is related to the intensity of the respective disturbance. Abrupt and repeated disturbances imply that vegetation

oscillates between different successional stages. In such a situation, vegetation may never reach the final successional stage but

it may be in a dynamic equilibrium state. The ecological resilience of an ecosystem (Holling, 1973; Walker et al., 2004) influ-

ences if the system can return into a pre-disturbed state or if it tips into an alternative vegetation state (Scheffer et al., 2001; van65

Nes and Scheffer, 2007; Veraart et al., 2012). Savannas exemplify an ecosystem type that is strongly influenced by and often

reliant on disturbances (Scheiter and Higgins, 2007), and subject to both disturbance and forcing lags. In savannas, fire reduces

woody biomass to the benefit of grasses. However, once fire disturbance is removed, fire-driven savannas are committed to

transition to higher tree cover (Sankaran et al., 2004; Higgins et al., 2007; Higgins and Scheiter, 2012). It has been argued

that alternative vegetation states are possible in areas currently covered by savannas, because depending on their history and70

fire activity, they can adopt an open savanna state or a closed forest state (Higgins and Scheiter, 2012; Moncrieff et al., 2014).

We expect that in areas that allow both savanna and forest states, fire amplifies forcing lags. In such systems, environmental

forcings need to cross a tipping point such that vegetation shifts from one ecosystem state into an alternative state (Scheffer

et al., 2001).

Deciphering and quantifying lags between transient and equilibrium vegetation states is highly relevant for understanding75

biogeographic patterns and associated biogeochemical fluxes as well as for conservation and management. The importance

of transient states and forcing lags was already highlighted in the 1980s, but often in the context of paleo-ecological studies

(Davis and Botkin, 1985; Davis, 1986; Webb III, 1986). For instance, Davis and Botkin (1985) found lagged responses of

various species in response to cooling using the JABOWA vegetation model. Changes in the dominance of species were only

visible 50 years after cooling. Several empirical studies quantified lag effects, for example in forests (Bertrand et al., 2011,80

2016; Liang et al., 2018), bird and butterfly communities (Devictor et al., 2012; Menendez et al., 2006), or in tropical forests

at the global scale (Zeng et al., 2013). Most of these studies investigated lags with respect to recent temperature changes or

in mountain areas with steep temperature gradients. Lag effects were also identified in response to drought (Anderegg et al.,

2015). More recently, lag effects received more attention in the context of future climate change. It has been argued that lag

effects need to be taken into account when we aim at forecasting future changes in the biosphere and at developing management85

or mitigation strategies (Svenning and Sandel, 2013; Bertrand et al., 2016). Lag effects imply that vegetation features such as

carbon stocks or tree cover are committed to changes that will be ongoing even if anthropogenic emissions of greenhouse gasses

level off and the climate system stabilizes (Jones et al., 2009; Port et al., 2012; Huntingford et al., 2013; Pugh et al., 2018).

Yet, previous studies did not consider a large CO2 gradient ranging from pre-industrial to future levels, but rather post-2100

conditions.90
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In this study, we use aDGVM, a complex dynamic vegetation model developed for tropical grass-tree ecosystems (Scheiter

and Higgins, 2009) to investigate how slow and fast changes in atmospheric CO2 and fire regimes influence transient and

equilibrium distributions of grasslands, savannas and forests in Africa, as well as associated biomass and tree cover. aDGVM

is an appropriate modeling tool in this context because it explicitly simulates the rate at which vegetation changes based on

underlying ecophysiological processes and underlying environmental conditions. It allows us to simulate both the equilibrium95

vegetation state for given CO2 mixing ratios, and transient vegetation dynamics, succession and adaptation of photosynthesis,

evapotranspiration, carbon allocation and phenology. We focus on atmospheric CO2 because it is a main driver of plant growth

and both empirical and modeling studies have shown substantial impacts on vegetation growth (Scheiter and Higgins, 2009;

Buitenwerf et al., 2012; Higgins and Scheiter, 2012; Donohue et al., 2013; Hickler et al., 2015). In addition, the CO2 mixing

ratio is almost similar at the global scale while other key drivers of plant growth such as rainfall and temperature are highly100

variable spatially (i.e. between different regions of the world), temporally (i.e. inter- and intra-annual variability) and between

different climate models within the CMIP5 ensemble.

We test the following predictions: (1) vegetation is typically not in equilibrium with the environment, more specifically

with atmospheric CO2, and forcing lags occur; (2) the size of the forcing lag is influenced by the rate of change of CO2; (3)

disturbance lags due to fire amplify forcing lags caused by CO2 change such that biomes with high fire activity will take longer105

to keep pace with environmental changes; (4) the sensitivity of vegetation to changes in the atmospheric CO2 mixing ratio is

sensitive to the absolute value of the CO2 mixing ratio. We explore the consequences of these predictions for projections of

climate change impacts on African vegetation under rates of CO2 change as predicted in RCP 2.6, 4.5, 6.0 and 8.5, examining

the difference between transient and equilibrium vegetation states as the CO2 mixing ratio change.

2 Methods110

2.1 Model description

We used the aDGVM (adaptive Dynamic Global Vegetation Model, Scheiter and Higgins, 2009), a dynamic vegetation model

for tropical grass-tree systems. The aDGVM integrates plant physiological processes generally used in dynamic global vegeta-

tion models (DGVMs, Prentice et al., 2007) with processes that allow plants to dynamically adjust leaf phenology and carbon

allocation to environmental conditions. The aDGVM is individual-based and simulates state variables such as biomass, height115

and photosynthetic rates of individual plants. This approach allows to model how herbivores (Scheiter and Higgins, 2012), fire

(Scheiter and Higgins, 2009) and land use (Scheiter and Savadogo, 2016; Scheiter et al., 2019) impact individual plants as a

function of plant traits. Grasses are simulated by two super-individuals, representing grasses beneath or between tree canopies.

The aDGVM simulates four plant types (Scheiter et al., 2012): C3 grasses, C4 grasses, fire-sensitive forest trees and fire-

tolerant savanna trees. The differences between C3 and C4 grasses are mainly based on physiological differences between C3120

and C4 photosynthesis. Savanna and forest tree types differ in fire- and shade-tolerance (Bond and Midgley, 2001; Ratnam

et al., 2011). The forest tree type is implemented to be shade-tolerant but fire-intolerant whereas the savanna tree type is shade-
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intolerant but fire-tolerant. Hence, forest trees dominate in closed ecosystems and in the absence of fire, whereas savanna trees

dominate in fire-driven and more open ecosystems.

In the aDGVM, fire intensity is modeled as a function of fuel loads, fuel moisture and wind speed (Higgins et al., 2008).125

Fire spreads when (1) the fire intensity exceeds a threshold value of 300 kJ/m/s, (2) a uniformly distributed random number

exceeds the daily fire ignition probability pfire (1%), and (3) an ignition takes place. Ignition sequences, which indicate days

when ignitions take place, are randomly generated. This fire model ensures that fire regimes are influenced by fuel biomass

and climate. However, fire ignitions and the ignition probability are not linked to anthropogenic ignitions or environmental

conditions such as the occurrence of lightning. Fire removes aboveground grass biomass, whereas the response of trees to fire130

is a function of tree height and fire intensity (topkill effect, Higgins et al., 2000). Seedlings and juveniles in the flame zone

are damaged by each fire while tall trees with tree crowns above the flame zone are largely fire-resistant and only damaged by

intense fires. Grasses and topkilled trees can regrow from root reserves after fire (Bond and Midgley, 2001). Fire influences

tree mortality indirectly due to its negative effect on the carbon balance. In the aDGVM, a negative carbon balance increases

the probability of mortality.135

The performance of the aDGVM was evaluated in previous studies. Scheiter and Higgins (2009) and Scheiter et al. (2012)

show that the aDGVM successfully simulates the distribution of major vegetation formations in Africa in good agreement

with observations. Scheiter and Higgins (2009) show that the aDGVM can simulate biomass dynamics observed in a long

term fire manipulation experiment in the Kruger National Park (Experimental Burn Plots, Higgins et al., 2007). In Scheiter

and Savadogo (2016) we showed that a slightly adjusted model version can reproduce grass biomass and tree basal area under140

different grazing, harvesting and fire treatments in Burkina Faso.

2.2 Biome classification

We classify vegetation into biome types using the classification scheme presented in Scheiter et al. (2012) and used in previous

aDGVM studies. When grass biomass in a simulated grid cell is less than 0.5 t/h and total tree cover is less than 10%, vegetation

is classified as desert or barren. When tree cover is less than 10% and grass biomass exceeds 0.5 t/ha, vegetation is, depending145

on the ratio of C3 to C4 grasses, classified as C3 or C4 grassland. At intermediate tree cover between 10% and 80%, the ratio

of C3 to C4 grass biomass and the cover of savanna and forest trees are used for classification. Vegetation is classified as a

woodland if forest tree cover exceeds savanna tree cover, whereas vegetation is classified as savanna if savanna tree cover

exceeds forest tree cover. We distinguish between C3 savanna and C4 savanna, depending on the ratio of C3 to C4 grasses.

Vegetation is classified as forest when tree cover exceeds 80%, irrespective of tree type and grass biomass.150
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2.3 Equilibrium conditions for aDGVM

We assume that an aDGVM state variable Vi at time i (see next paragraph for state variables used in the analysis) is in

equilibrium if

Y∑

i=Y−l+1

|Vi−Vi−1|< ε, (1)

where Y is the current year of the simulation, l is the number of years used for the calculation of equilibrium conditions (we155

use l = 30) and ε is a threshold defining the narrowness of the equilibrium (we use ε= 0.001). Trial simulations show that

these values allow vegetation to reach equilibrium within feasible model simulation runtime. Using different threshold values

changed the time required to reach the equilibrium state but did not change our basic results. Choosing ε too small will identify

model stochasticity as deviation from equilibrium, whereas choosing ε too large will fail to correctly identify the onset of

equilibrium conditions. Systematic sensitivity analyses for ε and l were not conducted.160

We used four modeled state variables V to characterize equilibrium states: savanna tree cover, forest tree cover, aboveground

tree biomass and C3:C4 grass ratio. We assume that the model is in equilibrium when all four variables fulfill eq. (1) simul-

taneously and we record the first year when the model is in equilibrium, Ye. It is possible that one or several variables leave

the equilibrium state again after year Ye, and that the condition in eq. (1) is no longer met for these variables. This can be for

example due to stochasticity in rainfall or due to fire. However, such situations are not considered in our analysis.165

2.4 Simulation experiments

All simulations were conducted for Africa at 2° spatial resolution. In all simulation scenarios, we initialized aDGVM with

100 small trees of both types and two super-individuals representing grasses under and between tree crowns. All simulation

scenarios in this study manipulated only CO2 whereas other climate variables such as precipitation or temperature were kept

constant with monthly climatology provided by CRU (Climatic Research Unit, New et al., 2002) for the reference period170

between 1961 and 1990. This model design allows us to study CO2 effects in isolation and it avoids interactive effects of

several forcing variables on the system state.

To test the first prediction, i.e., that vegetation is not in equilibrium with the environment, we simulated (1) the equilibrium

vegetation state for different CO2 mixing ratios, and (2) transient vegetation dynamics with increasing and decreasing CO2

mixing ratio. For simulations of the equilibrium state, we set CO2 to 100 ppm, 150 ppm, . . ., 1000 ppm. For each CO2 level175

we ran the model until an equilibrium vegetation state was reached in year Ye (eq. 1). Equilibrium conditions were derived for

each simulated 2° grid cell separately. For each grid cell and each CO2 level, we classified vegetation in year Ye into biome

types. We calculated the fractional area covered by different biome types in equilibrium and used the ‘loess’ smoother in R (R

Core Team, 2018) to obtain continuous response curves of fractional cover of biomes with respect to CO2. We further created

maps of the spatial patterns of Ye.180

For simulations of the transient vegetation state, aDGVM was initialized at low (100 ppm) or high (1000 ppm) CO2 mixing

ratio. In each grid cell, simulations were conducted until vegetation fulfilled the equilibrium condition defined in eq. (1). We
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then increased or decreased CO2 linearly to 1000 ppm or 100 ppm by 3.5 ppm per year or 0.9 ppm per year (see second

prediction for justification of these rates). We used linear CO2 changes between a minimum and a maximum CO2 mixing ratio

because linear changes in forcing variables allow to identify non-linear and tipping point behaviour in the vegetation state185

(Scheffer et al., 2001). Once CO2 reached 1000 ppm or 100 ppm, respectively, simulations were continued until vegetation re-

established the equilibrium state according to eq. (1) and the duration was tracked. For each grid cell and each simulation year,

we classified vegetation into biomes and calculated fractional cover of each biome type. The difference between the vegetation

state when first reaching a target CO2 mixing ratio in transient runs and the equilibrium vegetation state at the target CO2

mixing ratio is an indicator of the lag size between environmental forcing and vegetation. We used the proportion of Africa190

covered by different biome types, woody biomass and tree cover as proxies of lag size.

To test the second prediction, i.e., that the difference between transient and equilibrium vegetation is influenced by the rate of

change of environmental forcings, we conducted transient model runs where CO2 changed at two different rates. Specifically,

CO2 mixing ratios were changed by 3.5 ppm per year or 0.9 ppm per year to represent current and past rates of change.

The higher rate represents the average CO2 increase in the RCP 6.0 scenario, where CO2 increases from current values to195

approximately 700 ppm in 2100. In the simulations, 3.5 ppm per year implies that CO2 changes from 100 ppm to 1000 ppm

(or vice versa) within 230 years. The 0.9 ppm per year rate of CO2 change implies a change from 100 ppm to 1000 ppm (or

vice versa) within approximately 900 years. This rate overestimates rates of CO2 change at paleo-ecological time scales. It was

selected such that it differs substantially from the higher rate but that model run time is still feasible.

To test the third prediction, i.e., that fire amplifies lag effects, we conducted all simulations described in the previous para-200

graphs with fire switched on or off.

To test the fourth prediction, i.e., that sensitivity of vegetation to changes in CO2 is influenced by the CO2 mixing ratio, we

calculated the sensitivity of modeled state variables in relation to changes in CO2,

δV (C) =
|V (C)−V (C + ∆C)|

∆C
(2)

Here, V (C) is an aDGVM state variable at CO2 mixing ratio C, and ∆C is the increment of the CO2 mixing ratio used to205

calculate sensitivity. Sensitivity was calculated for the entire gradient considered in the study (i.e. 100 ppm to 1000 ppm) and

for all scenarios (i.e. equilibrium and transient, with and without fire). To filter out variability of simulated variables due to

model stochasticity and to account for different rates of change of the CO2 mixing ratio in different scenarios, we used the

‘loess’ function in R (R Core Team, 2018) for smoothing. The smoothed curves were used for calculations of sensitivity.

To explore if vegetation is currently in equilibrium with the atmospheric CO2 mixing ratio or committed to further change210

until 2100, we conducted simulations with CO2 from the RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5 scenarios between 1765

and 2100 (Meinshausen et al., 2011). Climate conditions were kept constant with monthly climatology provided by New

et al. (2002) to be able to compare simulations for different RCP scenarios to equilibrium simulations described in previous

paragraphs. We compare the simulated vegetation state in these transient runs to the equilibrium vegetation state at selected

CO2 mixing ratios to quantify lags in carbon and tree cover.215
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We conducted simulations at one selected savanna study site in South Africa (26°S, 28°E) to illustrate how different state

variables simulated by aDGVM respond to CO2 increases between 100 ppm and 1000 ppm at a rate of 3.5 ppm per year. To

account for stochastic effects in aDGVM we conducted 200 replicate simulation runs. Simulations were conducted with fire.

We analyzed leaf level photosynthetic rates, tree numbers, maximum tree height, mean tree height, forest tree cover and savanna

tree cover, averaged for all replicate runs. We plotted time series of these variables both in their native units and normalized220

between 0 and 1 using minimum and maximum values of the variables to be able to track the temporal lags in these variables.

3 Results

3.1 Equilibrium vegetation state

Equilibrium simulations for fixed CO2 mixing ratios show that the cover of C4-dominated vegetation (C4 grasslands and

savannas) in Africa decreases with increasing CO2, whereas the area covered by C3-dominated woody vegetation (woodlands225

and forests) increases (Fig. 1, 2). This general pattern is simulated both in the presence and the absence of fire. Fire increases

the cover of more open C4-dominated vegetation states at the expense of C3 woody vegetation states. This result indicates that

large areas in Africa can be covered by C4- or C3-dominated vegetation if fire is present or absent. The proportions of the area

where either C4- or C3-dominated vegetation is possible peaks at low CO2 (approximately 200 ppm) and decreases at higher

CO2 mixing ratios. The area covered by C3-dominated woody vegetation is maximized at 1000 ppm and saturates at 69% in230

the absence of fire and at 61% in the presence of fire. The area covered by C4-dominated vegetation peaks at 49% at a low

CO2 mixing ratio in the presence of fire and at 16% in the absence of fire. The area covered by deserts decreases from 46%

to 24% as CO2 increases and these areas are replaced by grasslands, savannas and woodlands (Fig. 1, 2). Areas covered by

C3 grasslands and C3 savannas increase as CO2 increases, but even at 1000ppm, coverage is less than 10%, irrespective of the

presence or absence of fire (Fig. A1).235

The time until vegetation reaches an equilibrium state varies substantially in different biomes and for different CO2 mixing

ratios. Times are longest in more open ecosystems, that is in grasslands, woodlands and savannas (Fig. 3). In most biomes,

times tend to increase with CO2. Times are shortest in forests. The duration is generally longer in the presence of fire than in

the absence of fire.

3.2 Transient vegetation state and forcing lags240

When vegetation is initialized at a CO2 mixing ratio of 100 ppm or 1000 ppm and CO2 increases or decreases progressively

in transient simulations, the area covered by different biome types at a given CO2 deviates considerably from the cover in

equilibrium simulations (Fig. 4). This pattern is consistent both in simulations with and without fire. Deviance indicates that

vegetation is generally not in equilibrium with the environment and that it lags behind the environmental forcing. At low and

increasing CO2, the area covered by grasslands and savanna increases steeply and overshoots the initial cover at 100 ppm,245

mainly because grasslands invade into deserts. As CO2 increases, the areas covered by C3- and C4-dominated vegetation
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approach the equilibrium state. Trees suppress grasses and eventually fire occurrence, such that forests ultimately manage to

invade most of the vegetated area. The deviation between equilibrium and transient cover of C3-dominated vegetation for slow

changes of CO2 in the presence of fire (Fig. 4d) is due to transitions from C4 grasslands and C4 savannas to C3 grasslands and

C3 savannas.250

The aDGVM simulates similar lag effects when CO2 decreases, indicating hysteresis, which is a signature of alternative

ecosystem states. The change of vegetation cover in transient simulation runs is non-linear although the CO2 forcing changes

linearly. In summary, this result confirms our first prediction, i.e. transient vegetation states deviate from the equilibrium state

and forcing lags occur.

The rate at which CO2 increases or decreases has a strong impact on the size of the forcing lags (Fig. 4). Fast changes in255

CO2 imply larger lags than slow changes in CO2. Lags are larger at low and intermediate CO2 mixing ratios and decrease at

higher CO2, irrespective of the rate of change of CO2. This result verifies the second prediction.

3.3 Fire and disturbance lags

A comparison of simulations with and without fire shows that fire increases the lag between the CO2 forcing and vegetation

(Fig. 4). In the scenario with rapidly changing CO2 mixing ratio, the maximum lag size averaged for entire Africa for C4-260

dominated biomes is 20% and 16.3% with and without fire, respectively, the maximum lag size for C3-dominated woody

biomes is 19.4% and 16% with and without fire, respectively. In scenarios with increasing CO2, lag size is maximized between

approximately 200ppm and 300ppm. When integrated along the entire CO2 gradient, the mean lag size for C4-dominated

biomes is 11.8% and 6.7% with and without fire, respectively, the mean lag size for C3-dominated biomes is 11.9% and

6.4% with and without fire, respectively. These patterns are similar in simulations with slowly changing CO2 mixing ratio, but265

percentages are systematically lower. The time to reach equilibrium is longer in simulations with fire than in simulation without

fire (Fig. 3), in particular in fire-driven biome types. Times are similar in forests with dense tree canopy, where aDGVM does

not simulate fire.

When CO2 is held constant after the transient phase, vegetation converges towards the equilibrium state. In simulations

without fire, times to reach equilibrium were similar in equilibrium simulations and in transient simulations with both slow or270

fast increases or decreases of CO2 (Figs. 5, 6). In simulations with fire, we generally observed longer times than in simulations

without fire, particularly in grassland and savanna areas and for decreasing CO2 (Fig. 6). In simulations with decreasing CO2

and fire included, times to reach equilibrium in grasslands and savannas were considerably longer in transient simulations than

in equilibrium simulations (Fig. 6). These findings support our third prediction that disturbance lags amplify forcing lags and

are particularly relevant in fire-driven systems.275

3.4 Carbon and tree cover debt

Forcing lags and disturbance lags imply carbon and tree cover debt (for increasing CO2, Fig. 7) or surplus (for decreasing

CO2, Fig. A2). Debt means that at a given CO2 mixing ratio, tree cover and carbon stocks are lower in transient simulations

than in equilibrium simulations at the same CO2 level. Accordingly, surplus means that tree cover and carbon are higher in
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transient simulations than in equilibrium simulations. Where debts and surpluses occur, carbon and tree cover are committed280

to further changes, even if environmental forcings stabilize, unless tipping point behavior inhibits vegetation change or allows

rapid vegetation changes that compensate debt or surplus.

Carbon debt increases over the entire CO2 gradient. At current CO2 levels of 400 ppm, carbon debt for Africa is between

-6.3 and -13.6 PgC for different scenarios and it increases to values between -24.8 and -39.9 PgC for 1000 ppm. At high CO2,

debt is higher for simulations without fire than for simulations with fire due to the combined effects of forcing and disturbance285

lags.

Tree cover debt in the presence of fire peaks at values around -15% between 300 ppm and 400 ppm, i.e. at current CO2

levels. Debt decreases at higher CO2 mixing ratios to values between -5.8% and -10%, depending on the scenario. Debt is

generally higher in presence of fire and when CO2 changes rapidly. The maximum deviance between transient and equilibrium

state (maximum debt and surplus) varies spatially with higher deviance in savannas and woodlands surrounding the central290

African forest and in the presence of fire.

3.5 Sensitivity of carbon and tree cover change

The sensitivity of the fractional cover of different biome types to changes in CO2 is influenced by the actual values of CO2

(Fig. 8a, b). In equilibrium simulations, the cover of C3-dominated biomes is most sensitive at low CO2 mixing ratios and

it decreases as CO2 increases. In simulations with fire, sensitivity of C4-dominated biomes is hump-shaped with a peak at295

ca. 380 ppm. In transient simulations, both C3 and C4-dominated biomes are most sensitive to changes in CO2 mixing ratios

between 200 and 600 ppm, depending on the specific scenario (Fig. 8c, d). Sensitivity is generally higher in the presence of fire

than in the absence of fire. For rapidly changing CO2, the peak is found at higher CO2 mixing ratios than for slowly changing

CO2. These results support our fourth prediction.

3.6 Responses to RCP scenarios300

Simulations for CO2 mixing ratios following trajectories of different RCP scenarios indicate carbon debt (Fig. 9a) and tree

cover debt (Fig. 9b) as the CO2 mixing ratio increases, similar to the simulations with linear changes of CO2 (Fig. 7). At

the current CO2 mixing ratio of approximately 400 ppm, aboveground tree carbon debt is between -8.9 PgC without fire and

-16.5 PgC with fire. In the RCP 2.6 and 4.5 scenarios, carbon debt in Africa accumulates to peak values between -9.9 and

-18 PgC and between -12.9 and -22 PgC, respectively and then decreases because in these scenarios, CO2 decreases (RCP 2.6)305

or saturates (RCP 4.5) at the middle of the century. In RCP 6.0, debt accumulates to values between -21.2 and -31 PgC, in

RCP 8.5 it accumulates to values between -47.5 and -60 PgC until 2100. In contrast, tree cover debt peaks between ca. 300

and 350 ppm at values between -3.3 and -17% in the presence or absence of fire, respectively. Tree cover debt decreases as the

CO2 mixing ratio increases towards the end of the century, with a rate depending on the specific RCP scenario. Generally, both

carbon and tree cover debt are higher in the presence of fire than under fire suppression.310
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4 Discussion

Using a dynamic vegetation model, we show that vegetation is typically not in equilibrium with environmental conditions, and

that transient vegetation deviates from the vegetation state expected for the prevailing environmental conditions. Vegetation

dynamics lag behind changing environmental drivers due to forcing lags. The size of the forcing lag depends both on actual

environmental conditions and on the rate at which conditions change. Disturbance lags caused by fire can amplify forcing lags315

in areas where multiple vegetation states are possible such as savanna areas that also support forest. Our results indicate that

vegetation in Africa is most sensitive to changes in the atmospheric CO2 mixing ratio at current conditions. Hence, even if

anthropogenic emissions of CO2 and the accumulation of CO2 in the atmosphere should level off in near future, ecosystems

will still be committed to considerable changes.

Our model simulations are consistent with our previous findings that biome distributions over large areas of Africa are320

dependent on fire (Higgins and Scheiter, 2012), and that these distributions are contingent on historic vegetation states and

likely to change under elevated CO2 (Scheiter and Higgins, 2009; Higgins and Scheiter, 2012; Moncrieff et al., 2014). While we

only considered transient vegetation dynamics in previous studies, we now show that these results also hold true for simulations

with equilibrium conditions. In our transient simulations we further show that linear forcing in CO2 can cause non-linear

responses in vegetation states, an indication of internal feedback loops and tipping point behaviour in the climate-fire-vegetation325

system (Scheffer et al., 2001). The potential for alternate biomes, dependent on fire, and hysteresis effects occur both in

equilibrium simulations with fixed CO2 and in transient simulations with variable CO2 mixing ratio. These effects occur over

the entire CO2 gradient between 100 and 1000 ppm.

4.1 Understanding forcing, disturbance and successional lags

Lags between environmental conditions and vegetation states occur if environmental conditions change faster than vegetation330

can respond. In such a situation, transient vegetation states deviate from the vegetation states that one would expect if prevailing

environmental conditions remained constant for a sufficiently long duration. The lag size is defined by the integrated effect of

interacting processes including delayed responses in ecophysiology, demography, migration and succession, and by the differ-

ent timescales on which these processes operate (Penuelas et al., 2013). Rates of change in environmental forcing and intensity

and frequency of disturbances further influence lag size. In aDGVM simulations we find a sequence of vegetation responses335

to changes in the CO2 mixing ratio that operate at different temporal scales. When CO2 increases, leaf level photosynthesis

and respiration increase instantaneously following the ecophysiology models implemented in aDGVM (Farquhar et al., 1980;

Collatz et al., 1991, 1992, Fig. 10). These adaptations imply higher carbon gain, water use efficiency and growth of individual

trees in the growing season as well as higher reproduction rates, because in aDGVM, the amount of carbon allocated to repro-

duction is a function of peak carbon gain. Free air carbon enrichment (FACE) experiments and open top chamber experiments340

for elevated CO2 indicate similar responses at the leaf level (Hickler et al., 2015; Kgope et al., 2010, Raubenheimer, Ripley,

et al., unpublished).
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In aDGVM, higher growth and reproduction rates of individual plants modify plant population dynamics and vegetation

structure. The model simulates an increase in mean tree height after CO2 starts increasing (Fig. 10). After a delay of approxi-

mately 70 years, trees can establish more successfully and tree number and savanna tree cover increase. Tree cover increases345

can be attributed to both increases in tree height, which in aDGVM implies an increase in a tree’s crown area, and in tree num-

ber. Increases in maximum tree height lag behind mean tree height and tree numbers (Fig. 10). All population-level responses

in the model are slower than leaf-level responses and lag behind ecophysiological adaptations.

Observing population-level responses to elevated CO2 in reality is challenging. Historic data from field surveys (Stevens

et al., 2017; O’Connor et al., 2014) and remote sensing (Donohue et al., 2013; Skowno et al., 2017) indicate woody encroach-350

ment in many savanna areas. These changes were often attributed to historic increases in CO2 (Midgley and Bond, 2015),

but also to land-use activities such as over-grazing (Roques et al., 2001). Yet, the strength of CO2 fertilization effects is de-

bated (Körner et al., 2005) and free air carbon enrichment (FACE) experiments indicate complex responses of vegetation to

elevated CO2 at population level (Hickler et al., 2015). Nutrient limitations (Hickler et al., 2015) and effects of mycorrhizal

associations on nutrient economy (Terrer et al., 2016) may add to the complexity of these responses. FACE experiments in355

savannas and sub-tropical ecosystems are rare. An exception is OzFACE in Queensland, Australia (Stokes et al., 2005) which

found increased growth rates for Eucalyptus and Acacia species. Previous studies showed that CO2 fertilization effects are

strong in aDGVM and largely compensate changes of other environmental conditions, particularly decreases in precipitation

(Scheiter et al., 2015). In Scheiter et al. (2018) we show that simulated woody cover increases in the Limpopo Province, South

Africa, under current conditions broadly agree with observations from Stevens et al. (2017), indicating that aDGVM simulates360

plausible responses to climate change for historic and current conditions.

Disturbance lags in fire-driven savannas are created by a well-known feedback mechanism between fire and vegetation

(Higgins and Scheiter, 2012; Hoffmann et al., 2012). Regular fire is a demographic bottleneck for tree establishment and traps

trees in a juvenile state (Higgins et al., 2000). At the population scale, fire preserves a characteristic, open savanna vegetation

state (Scheiter and Higgins, 2009) and keeps vegetation from reaching an equilibrium vegetation state, typically woodland or365

forest with higher tree cover, expected under the prevailing environmental conditions. Yet, reduced fire activity (Hoffmann

et al., 2012) or increased tree growth rates due to CO2 fertilization (Bond and Midgley, 2000) allow more trees to escape

the fire trap due to increased growth rates. As a consequence, the increasing tree cover starts to exclude grasses and curtails

fire frequency due to reduced fine fuel loads. This dynamic feedback between vegetation and fire dynamics implies that rapid

transitions between savanna and forest states are possible.370

Once fire is excluded at high CO2 mixing ratio, successional lags delay the establishment of an equilibrium state. These lags

are a direct consequence of disturbances and they emerge if plant community composition in the equilibrium state deviates from

transient, post-disturbance community composition. The aDGVM simulates fire-tolerant but shade-intolerant savanna trees and

fire-intolerant but shade-tolerant forest trees (Scheiter et al., 2012). At low CO2 and intermediate rainfall, aDGVM simulates

a fire-driven savanna state with predominantly savanna trees. Reduced fire activity and transitions to woody plant-dominated375

habitats imply that savanna trees and grasses are out-competed and gradually replaced by forest trees (Fig. 10). Successional

dynamics are slow and delay adaptation of community composition to elevated CO2. Empirical studies support successional
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lags in communities (Fauset et al., 2012; Esquivel-Muelbert et al., 2019), yet, these studies observed community responses to

drought rather than CO2.

We found that fire-driven savanna and grassland ecosystems take longer to reach equilibrium after the CO2 forcing stabilizes380

than forests. Forests are faster to stabilize and to balance their carbon and tree cover debt. In our simulations, this behavior is

driven by disturbance-related lags caused by fire. Fire generates a dynamic disequilibrium between climate and vegetation, and

it prevents both savanna and forest trees to recruit, to transition into the adult state, and to develop a closed canopy. When tree

cover exceeds a critical threshold, fire is suppressed and rapid canopy closure is possible. As fire rarely occurs in our simulated

forests, they lack the disturbance-related lag component and therefore reach equilibrium faster than fire-affected biome types.385

Moreover, forests in aDGVM represent the final stage in succession. Hence, they do not allow for further succession in contrast

to grasslands and savannas, where savanna trees can invade grasslands, and be replaced by forest trees in later successional

stages. aDGVM might underestimate lags in forest systems in contrast to alternative DGVMs or forest models that simulate

a higher number of PFTs or species (e.g. Hickler et al., 2012), or that allow plant traits and community composition within a

forest system to adapt to changing environmental drivers (Scheiter et al., 2013).390

4.2 Implications for adaptation, mitigation and policy

Lags between transient and equilibrium coverage of different vegetation types or biome types imply debt or surplus in tree

cover (Jones et al., 2009), carbon storage, biogeochemical fluxes and community composition (Bertrand et al., 2016). These

lags commit ecosystems to further changes even if the rate of climate change is reduced and the climate system converges

towards an equilibrium state (Jones et al., 2009; Port et al., 2012; Pugh et al., 2018). This finding has important implications395

for the development of adaptation and mitigation strategies for climate change.

First, it indicates that such strategies cannot be developed purely based on observed contemporary transient states when

attempting to mitigate further changing of climatic drivers, as is currently often the case. There is an urgent need to understand

equilibrium vegetation states, committed changes in vegetation states, and to take them into account in management policies

(Svenning and Sandel, 2013). Lag effects are also central to understanding resilience of an ecosystem (Holling, 1973; Walker400

et al., 2004).

Second, our findings imply a high priority and potential for managing fire-dependent ecosystems such as savannas. In these

ecosystems, it has been argued that elevated CO2 is the main driver for shrub encroachment and transitions to forest (Higgins

and Scheiter, 2012; Midgley and Bond, 2015). Suitable management intervention can oppose CO2 fertilization effects and

delay undesired vegetation changes (Scheiter and Savadogo, 2016). For instance, the introduction of fire can increase lags405

between transient and equilibrium vegetation states, whereas fire suppression for example by grazing (Pfeiffer et al., 2019) or

fire management (Scheiter et al., 2015) can reduce disturbance-related lags. Other disturbances or land use activities such as

herbivory or fuelwood harvesting have similar effects (Scheiter and Savadogo, 2016). Hence the potential for these ecosystems

to persist in a disequilibrium state relative to climate and CO2 creates the opportunity to mitigate changes brought about

by global change through management interventions. Conversely, allowing these systems to reach their equilibrium state has410

the potential to increase the global land carbon sink. While such management is relevant for carbon sequestration (Bastin
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et al., 2019), it might, however, imply loss of biodiversity concomitant with losses of open savanna and grassland ecosystems

(Veldman et al., 2015; Bond et al., 2019). Given the increasing lag size between transient and equilibrium vegetation states,

management should decide at the local scale if current or desired vegetation states should be maintained as long as possible

or if ecosystems should be managed to account for vegetation changes expected in near future. Ignoring committed changes415

might imply rapid vegetation shifts that inhibit sustainable management actions.

Third, we found that the rate at which environmental conditions change determines the size of the lag between transient

and equilibrium vegetation. Following the RCP 8.5 trajectory instead of the RCP 2.6 trajectory will therefore increase carbon

debt both due to higher CO2 mixing ratio and the acceleration of CO2 enrichment in the atmosphere. Following the RCP 2.6

trajectory instead of the RCP 8.5 trajectory would decrease the maximum aboveground carbon debt in Africa from -60 PgC to420

-18 PgC in the absence of fire and from -47.5 PgC to -9 PgC in the presence of fire.

Finally, climate and greenhouse gas concentrations in the atmosphere are likely to change at an unprecedented rate (Prentice

et al., 1993; Foster et al., 2017). Our results indicate that vegetation is most sensitive to changes in atmospheric CO2 at the

currently prevailing levels and values expected in near future (between approximately 350 ppm and 500 ppm, depending on

the simulation scenario and response variable investigated). Hence, we are currently in a period where small changes in CO2425

are likely to have large impacts on long-term vegetation change. The results also show that restoring savannas from heavily

encroached wood-dominated states is a long process, particularly if fire is lost from these ecosystems. This finding raises the

urgent need for society to act and reduce greenhouse gas emissions as the window of opportunity where human intervention

can contribute to reverse climate change impacts might close soon.

4.3 Implications for vegetation modeling430

The lag effects identified in our study have important implications for vegetation modelling and the process of testing and

benchmarking models. Lag effects are prevalent both in results from transient model simulations using time series of climate

data, and in data used for benchmarking, including remote sensing products (Saatchi et al., 2011; Simard et al., 2011; Avitabile

et al., 2016) or data collected in field surveys. Previous studies identified sources of uncertainty in data-model comparisons

(Scheiter and Higgins, 2009; Langan et al., 2017) related to model uncertainties or data uncertainties. We argue that the presence435

of forcing and disturbance lags can add to disagreement between benchmarks and simulation results, such as modeled and

satellite-derived productivity (Smith et al., 2016), carbon stocks, vegetation type, or species composition. Although DGVMs

typically simulate transient vegetation states based on time series obtained from climate models, we argue that to improve the

benchmarking process, we need to ensure that data and models represent similar successional stages. This can be achieved, e.g.

by applying appropriate model initialization methods using historical climate data or by considering effects of historic legacies440

on vegetation (Moncrieff et al., 2014). We concede that this is not an easy task as large-scale data on equilibrium vegetation

states or lag sizes are typically not available, and as vegetation states have been modified by human land use for millennia.

Remote sensing products such as the GEDI mission (gedi.umd.edu) may provide high-resolution data required to initialize

models with biomass and vegetation structure.
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The emergence of lag effects also highlights the relevance of adequate representation of demography, succession and dis-445

turbance regimes in vegetation models and makes a case for individual-based approaches. Understanding and quantifying lags

necessitates prioritization and further model development with respect to these processes (Fisher et al., 2018) as well as im-

proved knowledge of the rates at which these processes operate. Accurate representation of rates of changes may contribute

to improve data-model agreement (Smith et al., 2016). In-depth model testing against available long-term observations of

successional changes in response to climate change and disturbance can further reduce model uncertainties. Fire or herbivore450

manipulation experiments conducted in Kruger National Park (Higgins et al., 2007) or in Burkina Faso (Savadogo et al., 2009)

exemplify such data sets, in particular because they not only provide time series for benchmarking but also include relevant

and documented disturbance processes under controlled conditions.

In this study, we only considered natural fire regimes as simulated by aDGVM. However, to understand the full complexity

of vegetation lags, further disturbances need to be taken into consideration. This includes managed fire (intentionally planned455

as well as accidental anthropogenic fires), but also herbivory (grazing and browsing), fuelwood harvesting, deforestation or

conversion of natural land to agricultural or forestry areas. In this study we only quantified lags in biome shifts, tree cover

and aboveground carbon storage, but our framework can be extended to further ecosystem services in follow-up studies. In

addition, we only considered changes in CO2 in this study whereas changes in other key variables influencing vegetation,

particularly precipitation and temperature, were ignored. Previous aDGVM studies show that change in CO2 is the main driver460

of simulated future vegetation change due to strong CO2 fertilization effects (Scheiter and Higgins, 2009; Scheiter et al., 2015,

2018). We therefore expect that using time series of both CO2 and climatic drivers following RCP scenarios will not change

the fundamental results of our study. This expectation is supported by preliminary simulation results using various climatic

drivers for RCP 8.5 and 4.5 (Pfeiffer et al., unpublished).

4.4 Further lags in the climate-vegetation system465

In this study, we identified three lags between transient and equilibrium vegetation, namely forcing, disturbance and succes-

sional lags. Yet, due to the design of aDGVM our study ignores other lag effects in the climate-vegetation system.

Migration lags occur due to a limited speed of seed dispersal and migration under variable climate. Dispersal and migration

can, particularly in vegetation, typically not keep pace with climate change (Loarie et al., 2009). Migration lags have been

investigated, but typically using statistical approaches such as species distribution modelling (Thuiller et al., 2005). Extending470

DGVMs with dispersal models is, however, possible. For instance, Blanco et al. (2014) used a spatially explicit version of

aDGVM to show that forest expansion rates in Araucaria forest-grassland mosaics in southern Brazil are sensitive to charac-

teristics of the dispersal traits of Araucaria trees. Sato and Ise (2012) showed with SEIB-DGVM that including dispersal in

projections of African vegetation until 2100 implies lagged responses in simulated biome boundary shifts.

Once a species has migrated into another suitable region, establishment lags due to competition between established and475

invading species can occur and prevent establishment of invading species. To quantify establishment lags in DGVMs, an

accurate description of competition, demography and succession is necessary. Scheiter et al. (2013) argued that competition is

often not adequately described in DGVMs. More advanced models are required that simulate competitive interactions between
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individual plants for space, light, nutrients and water, and consider allelopathic interactions. In addition, novel approaches

based on trait variation such as aDGVM2 (Scheiter et al., 2013; Langan et al., 2017), JEDI-DGVM (Pavlick et al., 2013) or480

LPJmL-FIT (Sakschewski et al., 2015) can be applied to identify establishment lags based on their detailed description of

individual plants and plant communities that are characterized by variable and dynamic traits instead of relying on a fixed

number of static plant functional types.

At longer time scales, evolutionary lags occur due to evolution of species adapted to changing environmental conditions or to

disturbance regimes (e.g., Simon et al., 2009; Guerrero et al., 2013). More advanced vegetation models are required to simulate485

how evolutionary processes such as trait inheritance, mutation and cross-over allow plants to adapt to changing environmental

conditions over many generations. While aDGVM2 (Scheiter et al., 2013) includes these mechanisms, the model has so far not

been applied in an evolutionary context. Such an application would require a re-parametrization of mutation and cross-over

rates using empirical data to account for the temporal component of evolutionary processes.

Finally, atmosphere-biosphere lags can occur where delayed responses of vegetation change to environmental change feed490

back to the environment to delay responses. For example, increasing forest cover due to CO2 fertilization and resulting in-

crease in carbon sequestration may reduce CO2 enrichment in the atmosphere and associated amplification of radiative forcing.

Investigation of atmosphere-biosphere lags requires fully coupled models that simulate biogeochemical fluxes between atmo-

sphere and biosphere. Jones et al. (2009) used such a fully coupled model to investigate lags in Amazon forest die-back, but

feed-backs to the climate system were not explicitly considered. Port et al. (2012) used the fully coupled MPI ESM to show495

that lagged responses of vegetation may, in a scenario where CO2 emissions are zero after 2120, reduce atmospheric CO2 by

approximately 40ppm until 2300. Another well-studied example is the Sahel greening phenomenon where smooth changes in

rainfall regimes trigger abrupt and delayed responses in vegetation cover due to vegetation-atmosphere feed-backs (Brovkin

et al., 1998; Claussen et al., 1999; Foley et al., 2003).

5 Conclusions500

To conclude, our study shows that vegetation generally lags behind changing atmospheric CO2 mixing ratio. We are currently

in a phase of high carbon storage and tree cover debt and vegetation cover deviates substantially from the committed vegetation

state. Our study shows that vegetation is most sensitive to changes in atmospheric CO2 at current levels of atmospheric CO2

and those expected in near future. This finding indicates the need to act and reduce greenhouse gas emissions. Lags are larger

in fire-dependent systems such as savannas than in arid grasslands or forests. Lag effects in vegetation status need to be505

considered for the development of management plans or mitigation strategies because we expect further changes in vegetation

even if emissions of CO2 and other greenhouse gasses are reduced and the climate system stabilizes. There is an urgent need

to understand lag effects not only in response to variable CO2, but also to other key variables of the climate system such as

temperature and precipitation, as well as to extreme events such as heat waves or drought.
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Figure 1. Area of Africa covered by (a) C4-dominated (C4 grassland and savanna) and (b) C3-dominated (woodland and forest) vegetation

under equilibrium conditions. Simulations were conducted until vegetation reached an equilibrium state. Differences between simulations

without fire (solid lines) and with fire (dashed lines) indicate that both C3 and C4 vegetation states are possible. Fig. A1 shows cover fractions

separated by biome type.
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Figure 2. Biome distribution at different CO2 mixing ratios and in the presence or absence of fire. Simulations were conducted until vegetation

reached an equilibrium state.
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Figure 3. Time required to reach the equilibrium biome state in simulations with fixed CO2 mixing ratio. Time was averaged for different

biome types and different CO2 mixing ratios. Times to reach equilibrium are shortest in forest, and not respond strongly to CO2. In more

open systems (grassland, savanna, woodland) times to reach equilibrium are longer than in forests, and equilibration times increase as CO2

increases. Times to reach equilibrium are shorter under fire suppression (b) than in the presence of fire (a).
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Figure 4. Percentages covered by C3- and C4-dominated vegetation in the presence and absence of fire. CO2 is increased or decreased at two

different rates between 100 ppm and 1000 ppm. The gray line indicates vegetation cover in equilibrium simulations. Arrows indicate whether

CO2 increases or decreases.
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Figure 5. Time required to reach equilibrium in equilibrium simulations and transient simulations with both slow and fast increases of CO2.

Note that 3000 years in the legend means ≥3000 years, because simulations were run for a maximum of 3000 years.
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Figure 6. Time required to reach equilibrium in equilibrium simulations and transient simulations with both slow and fast decreases of CO2.

Note that 3000 years in the legend means ≥3000 years, because simulations were run for a maximum of 3000 years.
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Figure 7. Debt of vegetation carbon and tree cover when the atmospheric CO2 mixing ratio increases. Lines represent the mean of differences

between transient and equilibrium simulations of all study sites in Africa (simulated at 2° resolution). See Fig. A2 for decreasing CO2 and

associated tree cover and carbon surplus.
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Figure 8. Sensitivity of vegetation cover to changes in the atmospheric CO2 mixing ratio (in % change vegetation cover per ppm increase).

Upper panels (a, b) show equilibrium simulations, lower panels (c, d) show transient simulations.
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Figure 9. Vegetation carbon and tree cover debt when the atmospheric CO2 mixing ratio increases according to different RCP scenarios.

Lines represent differences between transient and equilibrium simulations averaged for all study sites in Africa (simulated at 2° resolution).

Solid lines represent simulations without fire, dashed lines represent simulations with fire. Arrows indicate time between 1950 and 2100.
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Figure 10. Vegetation responses to increasing CO2. Panels show (a) time series of different state variables at a savanna study site in South

Africa (26°S, 28°E), and (b) a schematic illustration of processes. State variables represent averages of 200 replicate simulation runs for the

site. Normalization of state variables between zero and one based on minimum and maximum values was applied to be able to illustrate

temporal lags between variables. Fig. A3 provides the time series without normalization and with units or respective variables.
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Figure A1. Area of Africa covered by different biome types. Simulations were conducted until vegetation reached an equilibrium state.

Differences between simulations without fire (solid lines) and with fire (dashed lines) indicate that both C3 and C4 vegetation states are

possible.
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Figure A2. Surplus of tree cover and carbon when the atmospheric CO2 mixing ratio decreases. Lines represent the mean of differences

between transient and equilibrium simulations of all study sites in Africa (simulated at 2° resolution).
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Figure A3. Time series of different state variables at a savanna study site in South Africa (26°S, 28°E). State variables represent averages of

200 replicate simulation runs for the site.
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